
CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Assignment II:
Calculator Brain
Objective

You will start this assignment by enhancing your Assignment 1 Calculator to include the
changes made in lecture (i.e., the program Property List and access control). This is the
last assignment for which you will have to replicate code from lecture by typing it in.
You’re then going to push its capabilities a bit further by allowing a “variable” as an
input to the Calculator and support Undo.
This assignment must be submitted using the submit script described here by the start
of lecture next Wednesday (i.e. before lecture 6). You may submit it multiple times if
you wish. Only the last submission will be counted.
Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials
• You will need to have successfully completed Assignment 1. This assignment builds on

that.
• You will also need to watch the recording of lecture 3 and make the same changes to

your Assignment 1 code.

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN1 7

http://web.stanford.edu/class/cs193p/cgi-bin/drupal/submissions

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Required Tasks
1. All of the changes to the Calculator made in lecture must be applied to your

Assignment 1 solution. This includes both the program var and properly setting access
control on all methods and properties. Get this fully functioning before proceeding to
the rest of the Required Tasks. And, as last week, type the changes in, do not copy/paste
from anywhere.

2. Do not change any non-private API in CalculatorBrain and continue to use the
Dictionary<String,Operation> as its primary internal data structure.

3. Your UI should always be in sync with your Model (the CalculatorBrain).

4. Add the capability to your CalculatorBrain to allow the input of variables. Do so by
implementing the following API in your CalculatorBrain …

func setOperand(variableName: String)
var variableValues: Dictionary<String, Double>

These must do exactly what you would imagine they would: the first inputs a
“variable” as the operand (e.g. setOperand(“x”) would use a variable named x) and the
second lets users of the CalculatorBrain API set the value for any variable they wish
(e.g. brain.variableValues[“x”] = 35.0). Your CalculatorBrain must support any
number of variables. You can assume that no variable name will be the same as an
operation symbol.

5. The result var must now properly reflect variable values (from the variableValues
dictionary) whenever variables have been used (both in the past and in the future, see
8e below). If a variable has no value set in the dictionary, then use 0.0 as its value. If
the variableValues dictionary is changed, then the result will have to change to
reflect any new variable values.

6. Your description var must continue to work properly and should show the name of
the variable (not its value) wherever it appeared as input.

7. The program var added in lecture will need to be upgraded to support variables too.

8. Add two new buttons to your Calculator’s UI: →M and M. Don’t sacrifice any of the
required operation buttons from Assignment 1 to add these (though you may add
more operations buttons if you want). These two buttons will set and get (respectively)
a variable in the CalculatorBrain called M.
a. →M sets the value of the variable M in the brain to the current value of the display

and then shows the brain’s result in the display.
b. →M does not perform setOperand.

c. Touching M should setOperand(“M”) in the brain and then show the brain’s
result in the display.

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN2 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

d. →M and M are Controller mechanics, not Model mechanics (though they both use
the Model mechanic of variables).

e. This is not a very great “memory” button on our Calculator, but it’s good for
testing whether our variable function implemented above is working properly.
Examples …
9 + M = √ ⇒ description is √(9+M), display is 3 because M is not set (and so is 0)

7 →M ⇒ display now shows 4 (the square root of 16), description is still √(9+M)

+ 14 = ⇒ display now shows 18, description is now √(9+M)+14

9. Make sure your C button from Assignment 1 works properly in this assignment. In
addition, it should remove any value for the M variable from the variableValues
Dictionary in the CalculatorBrain (not set it to zero or any other value). This will
allow you to test the case of an “unset” variable.

10. Add an Undo button to your Calculator. In Assignment 1’s Extra Credit, you might
have added a “backspace” button. Here we’re talking about combining both
backspace and actual undo into a single button. If the user is in the middle of
entering a number, this Undo button should be backspace. When the user is not in
the middle of entering a number, it should undo the last thing that was done in the
CalculatorBrain. Do not undo the storing of variable values (but DO undo the setting
of a variable as an operand).

11. There are new Evaluation criteria this week, so be sure to check out that section
below.  

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN3 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Hints
1. Even though users of the CalculatorBrain’s API input a variable with a method

called setOperand, there’s no reason that the CalculatorBrain’s internal
implementation of variables can’t use the operation mechanics to make it work (in
fact, this is probably a great idea since you have so much infrastructure already for
handling operations inside your CalculatorBrain).

2. The scope of this assignment is similar to last week’s (i.e. it can be done in its entirety
in a few dozen lines of code and if it is taking you more than 100 lines of code, you’ve
probably gone down the wrong path somewhere).

3. Some things (like π or the result of another expression) are a bit tricky to store in M
after you’ve already entered the expression you want evaluated (e.g. enter cos(M) and
then try to set M to π). Once you implement Undo, you’ll be able to do this (by
“undoing” whatever expression, including just hitting π, that you used to calculate the
value you wanted to store in M).

4. Don’t forget to think about your CalculatorBrain as a reusable class: it would be
more flexible (and there’s no reason not) to allow programmers using its public API to
clear the brain separately from the brain’s variable values (even though your C button
does clear both).

5. Consider using optional chaining in your implementation of displayValue.

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN4 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. Array
2. Value Semantics
3. Property Observer
4. Property List
5. String Manipulation
6. Setting Dictionary Values
7. Other Assorted Swift Language Features

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN5 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Program can be made to crash (e.g. an Optional that’s nil was unboxed with !).

• Your solution is difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

• UI is a mess. Things should be lined up and appropriately spaced to “look nice.”

• Private API is not properly delineated.
Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SDK, but should not assume that they
already know the (or a) solution to the problem.

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN6 7

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course. There are some hints for you on the next page.

1. Have your calculator report errors. For example, the square root of a negative
number or divide by zero. There are a number of ways to go about “detecting” these
errors (maybe add an associated value to the Unary/BinaryOperation cases which is a
function that detects an error or perhaps have the function that is associated with a
Unary/BinaryOperation return a tuple with both the result and an error (if any)
or ???). How you report any discovered errors back to users of the CalculatorBrain
API will require some API design on your part, but don’t force users of the
CalculatorBrain API to deal with errors if they don’t want to (i.e. allow Controllers
that want to display errors to do so, but let those that don’t just deal with NaN and +∞
appearing in their UI). In other words, don’t change any of the existing
methods or properties in the non-private API of CalculatorBrain to support
this feature (add methods/properties as needed instead).

PAGE OF ASSIGNMENT II: CALCULATOR BRAIN7 7

